Definitions and key facts for section 1.7

An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution. Otherwise, the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent, that is, if there exist weights $c_{1}, c_{2}, \ldots, c_{p}$ not all zero, such that

$$
\begin{equation*}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} \tag{1}
\end{equation*}
$$

In this case, we call (1) a linear dependence relation.

Fact: Linear independence of the columns of a matrix

The columns of a matrix A are linearly independent if and only if the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution which, in turn, occurs if there are no free variables.

Fact: Characterization of linearly dependent sets A set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

Indeed, if $\mathbf{v}_{1} \neq \mathbf{0}$ and S is linearly dependent then some \mathbf{v}_{j} is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.
So, a pair of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if one is a multiple of the other, and linearly independent if neither is a multiple of the other.

Fact: Two conditions guaranteeing linear dependence Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in \mathbb{R}^{n}, then

- if $\mathbf{0}$ is in S, S is linearly dependent; and
- if $p>n, S$ is linearly dependent. (That is, if there are more vectors than the number of entries in each vector, they are linearly dependent.)

